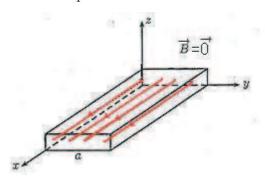
Conduction électrique sous champ magnétique

$1^{\grave{e}re}$ partie : Sonde à effet HALL

1.1 on a

$$I_0 = \int \int_{ab} \vec{j} . d\vec{S} \Longrightarrow \vec{j} = \frac{I_0}{ab} \vec{u}_x$$

, les lignes de courant sont des droites parallèles à l'axe Ox :



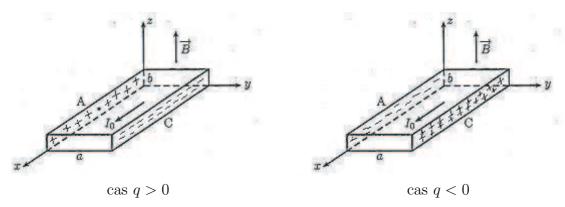
1.2 B > 0

1.2.1 $\vec{f}_L = q\vec{v} \times \vec{B} = -qvB\vec{u}_y$, une déviation latérale selon Oy.

1.2.2 I_0 étant positif alors :

si q > 0 donc v > 0 càd $\vec{f}_L . \vec{u}_y < 0$ la face infranchissable y = 0 sera chargée positivement et la face infranchissable y = a chargée négativement (par neutralité)

si q < 0 donc v < 0 càd $\vec{f}_L . \vec{u}_y < 0$ la face infranchissable y = 0 sera chargée négativement et la face infranchissable y = a sera chargée positivement (par neutralité)



1.2.3 les charges accumulées en surface créent un champ électrique s'opposant à l'effet de \vec{f}_L tel que en équilibre :

$$q\vec{E}_h + \vec{f}_L = \vec{0} \Longrightarrow \vec{E}_h = -\frac{\vec{f}_L}{q} = vB\vec{u}_y$$

direction : Oy , sens : des charge positives vers les charges négatives

1.2.4 en régime établit statique

$$V_h = V_A - V_C = \int_C^A -\vec{E}_h . d\vec{\ell} = \int_a^0 -vB\vec{u}_y . dy\vec{u}_y = vBa$$

le signe de V_h est celui de v , donc aussi celui de q

1.2.5 on a $\vec{j} = nq\vec{v} = \frac{I_0}{ab}\vec{u}_x$ donc $v = \frac{1}{nq}\frac{I_0}{ab}$ soit :

$$V_h = R_h \frac{I_0 B}{h}$$

- 1.3 Applications
- 1.3.1
- 1.3.1.1 $n = \frac{nombre\ d'e^-}{volume} = \frac{1 \times nombre\ de\ Cu}{volume} = \frac{\rho N_A}{M} = 8.49\ 10^{28} m^{-3}$ Rqe : la masse volumique est en $kg.m^{-3}$
- **1.3.1.2** $R_h = \frac{1}{nq} = \frac{1}{-ne} = -7.36 \ 10^{-11} m^3. C^{-1}$
- **1.3.1.3** la tension de HALL $V_h = -0.735 \,\mu V$ est tès faible, pour un fort champ magnétique $B = 1 \, T$, une forte intensité de courant $I_0 = 1 \, A$ et une faible épaisseur $b = 0, 1 \, mm$.
- 1.3.2
- 1.3.2.1 $n(\text{semi-conducteur}) \ll n(\text{métaux})$
- **1.3.2.2** on mesure la d.d.p de HALL à l'aide d'un voltmètre , or $B = \frac{b}{I_0 R_h} V_h \propto V_h$, par étalonnage on détermine la constante de proportionnalité

$2^{\grave{e}me}$ partie : Loi d'OHM anisotrope

- ${\bf 2.1}~[\tau] = \frac{[mv]}{[f]} = \frac{[kgm/s]}{[kgm/s^2]} = s$, τ est un temps
- $2.2 \ \vec{j} = \rho_m \vec{v} = nq\vec{v}$
- **2.3** le PFD appliqué à la charge q dans le référentiel Galiléen s'écrit $m\frac{d\vec{v}}{dt} = -\frac{m\vec{v}}{\tau} + q(\vec{E} + \vec{v} \times \vec{B})$ En régime permanent le terme de gauche est nul, tenant compte de 2.2 il vient :

$$\vec{E} = \frac{m}{\tau n q^2} \vec{j} + \frac{1}{nq} \vec{B} \times \vec{j}$$
 (2)

où
$$\sigma = \frac{\tau nq^2}{m} > 0$$
 et $R_h = \frac{1}{nq}$

- $2.4 \vec{B} = B\vec{u}_z.$
- **2.4.1** la projection de la relation (2)donne :

$$\begin{cases} E_x = \frac{j_x}{\sigma} - BR_h j_y \\ E_y = \frac{j_y}{\sigma} - BR_h j_x \\ E_z = \frac{j_z}{\sigma} \end{cases}$$

par remplacement il vient:

$$\begin{cases} j_x = \frac{\sigma}{1 + (\tau \omega_c)^2} (E_x + \tau \omega_c E_y) \\ j_y = \frac{\sigma}{1 + (\tau \omega_c)^2} (-\tau \omega_c E_x + E_y) \\ j_z = \sigma E_z \end{cases}$$

$$\bar{\bar{\sigma}} = \begin{pmatrix} \frac{\sigma}{1 + (\tau \omega_c)^2} & \frac{\tau \omega_c \sigma}{1 + (\tau \omega_c)^2} & 0\\ \frac{-\tau \omega_c \sigma}{1 + (\tau \omega_c)^2} & \frac{\sigma}{1 + (\tau \omega_c)^2} & 0\\ 0 & 0 & \sigma \end{pmatrix}$$

- **2.4.3** la conductivité des trois directions de l'espace est différente , le milieu est anisotrope! ou dire que \vec{E} et \vec{j} ne sont pas colinéaire
- ${\bf 2.4.4}\,$ oui, le milieu est linéaire car les éléments de la matrice sont indépendant de \vec{E}
- **2.4.5** si $\vec{B} = \vec{0} \Longrightarrow \omega_c = 0 \Longrightarrow \vec{j} = \sigma \bar{1} \vec{E} = \sigma \vec{E}$

On retrouve la loi d'Ohm isotrope!

3^{ème} partie : Effet CORBINO

3.1

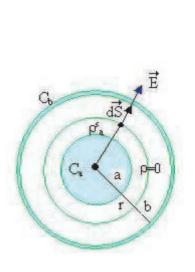
- 3.1.1 non, car le potentiel n'est pas uniforme $(V_a > V_b)$, il sera siège d'un courant électrique
- **3.1.2** les équipotentielle sont des cylindres r=cte \Longrightarrow V=V(r) \Longrightarrow $\vec{E}=-\overrightarrow{\nabla}V(r)=E(r)\vec{u}_r$, les invariances sont respectées
- 3.1.3 le théorème de GAUSS s'écrit :

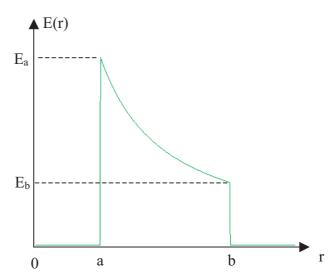
$$\oint_{r=cte} E(r)\vec{u}_r.dS\vec{u}_r = \frac{Q_{int}}{\varepsilon_0}$$

entre les deux cylindres C_a et C_b la densité de charge volumique est nulle en effet la conservation de la charge en régime permanent, tenant compte de la loi d'Ohm:

$$div(\sigma\vec{E}) = 0$$

d'aprés l'équation de Maxwell-Gauss on obtient $\rho=\varepsilon_0 div\vec{E}=0$





le théorème de Gauss devient pour a < r < b :

$$E(r)2\pi rh = \frac{\rho_a^s 2\pi ah}{\varepsilon_0}$$

soit:

$$E(r) = \frac{\rho_a^s a}{\varepsilon_0 r}$$

3.1.4

$$E_a = E(r = a^+) = \frac{\rho_a^s}{\varepsilon_0}$$

Rqe : on retrouve la relation de passage en r=a (i.e le champ à l'intérieur du **conducteur** parfait C_a est nul $E(r=a^-)=0$)

3.1.5

$$V_{ab} = V_a - V_b = \int_b^a -E dr = \frac{\rho_a^s a}{\varepsilon_0} \ln(\frac{b}{a}) \Longrightarrow \rho_a^s = \frac{\varepsilon_0 V_{ab}}{a \ln(\frac{b}{a})} > 0$$

3.1.6 il vient

$$\vec{E} = \begin{cases} \vec{0} & r < a \\ \frac{V_{ab}}{r \ln(\frac{b}{a})} \vec{u}_r & a < r < b \\ \vec{0} & r > b \end{cases}$$

3.1.7

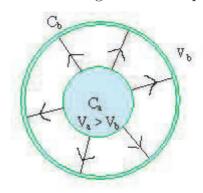
$$E_b = E(r = b^-) = \frac{\rho_a^s a}{b\varepsilon_0}$$

dans le cas d'influence totale entre C_a et C_b on aura $Q_a = -Q_b \Longrightarrow \rho_a^s 2\pi ah = -\rho_b^s 2\pi bh$ soit

$$E_b = -\frac{\rho_b^s}{\varepsilon_0} > 0$$

Rqe : on retrouve la relation de passage en r=b (i.e le champ à l'intérieur du conducteur parfait C_b est nul $E(r=b^+)=0$)

3.1.8 la loi d'Ohm en absence de champ magnétique $\vec{j} = \sigma \vec{E} \Longrightarrow$ les lignes de courants sont confondues avec les lignes de champ radiales se dirigeant vers les potentiels décroissant



3.1.9 l'intensité du courant électrique

$$I_0 = \int \int_{r=cte} \vec{j} \cdot d\vec{S} = \int \int \sigma \frac{V_{ab}}{r \ln(\frac{b}{a})} \vec{u}_r \cdot dS \vec{u}_r = \frac{\sigma V_{ab}}{\ln(\frac{b}{a})} 2\pi h$$

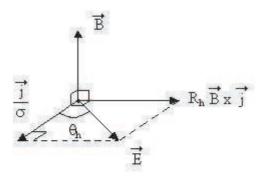
3.1.10

$$R_0 = \frac{V_{ab}}{I_0} = \frac{\ln(\frac{b}{a})}{2\pi\sigma h}$$

si $h\nearrow R\searrow$ l'association des tranches est parallèle si $\frac{b}{a}\nearrow R\nearrow$ l'association des tranches est serie

 $3.2 \vec{B} = B\vec{u}_z$

3.2.1 la relation (2) se représente :



3.2.2
$$\tan \theta_h = \frac{|\vec{B} \times \vec{j} R_h|}{|\vec{j}|} = \sigma R_h B$$

3.2.3 la ligne de courant est donnée par :

$$\vec{j} \times d\vec{\ell} = \vec{0} \Longrightarrow j_r r d\theta = j_\theta dr$$

d'autre par la relation (2) projetée sur \vec{u}_{θ} donne :

$$0 = \frac{1}{\sigma} j_{\theta} + B j_r R_h$$

il vient donc

$$-d\theta = R_h B \sigma \frac{dr}{r} \tag{*}$$

qui s'intégre en

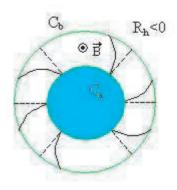
$$r(\theta) = r_0 \exp(\frac{\theta_0 - \theta}{R_h B \sigma})$$

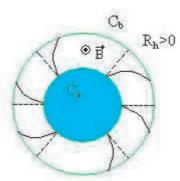
partie:

d'une spirale exponentielle

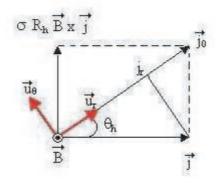
si B=0 alors (*) donne $d\theta=0$ soit $\theta\equiv\theta_0$, la ligne de courant est un segment (a< r< b) radial et coïncide avec celle du champ électrique!

Rqe : voici la représentation des lignes de courant en présence du champ magnétique $\vec{B}=B\vec{u}_z$





3.2.4:



3.2.4.1 la relation (2) s'écrit $\vec{j}_0 = \vec{j} + \sigma R_h \vec{B} \times \vec{j}$

sachant que les deux termes de droites sont orthogonales et le module s'écrit :

$$j_0^2 = j^2 + (\sigma R_h B)^2 j^2 \Longrightarrow j = \frac{j_0}{\sqrt{1 + (\sigma R_h B)^2}} = j_0 \cos \theta_h$$

3.2.4.2

$$j_r = j\cos\theta_h = \frac{j_0}{1 + (\sigma R_h B)^2}$$

3.2.5

3.2.5.1 l'intensité du courant électrique

$$I = \int \int_{r=cte} \vec{j} \cdot d\vec{S} = \int \int_{r=cte} j_r \cdot dS = \frac{j_0 2\pi rh}{1 + (\sigma R_h B)^2} = \frac{I_0}{1 + (\sigma R_h B)^2}$$

3.2.5.2

$$R = \frac{V_{ab}}{I} = \frac{V_{ab}}{I_0} [1 + (\sigma R_h B)^2] = R_0 [1 + (\sigma R_h B)^2]$$

3.2.5.3 la variation relative de résistance s'écrit :

$$\delta = \frac{R - R_0}{R_0} = (\sigma R_h B)^2 > 0$$

la résistance croit avec le champ magnétique en B^2 c'est l'effet magnéto-résistance

- **3.2.5.4** les lignes de courant sont allongées (spirales) \Longrightarrow plus de frottement par le porteur de charge. ou dire que les lignes de courants sont déviées \Longrightarrow moins de courant qui va de C_a à C_b , la ddp étant la même.
- **3.2.5.5** $\delta = 2 \ 10^{-5}$
- **3.2.5.6** $\delta = 0.5$ (ou bien 50%)

l'effet magnéto-résistance se manifeste nettement mieux dans les semi-conducteurs que dans les conducteurs métalliques!

fin du corrigé